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Direct numerical simulations (DNS) of bypass transition due to high-amplitude
free-stream turbulence (FST) are carried out for a flat-plate boundary layer. The
computational domain begins upstream of the plate leading edge and extends into
the fully turbulent region. Thus, there is no ad hoc treatment to account for the initial
ingestion of FST into the laminar boundary layer. We study the effects of both the
FST length scale and the disturbance behaviour near the plate leading edge on the
details of bypass transition farther downstream. In one set of simulations, the FST
parameters are chosen to match the ERCOFTAC benchmark case T3B. The inferred
FST integral length scale L11 is significantly larger (RL =UL11/ν = 6580) than that
employed in previous simulations of bypass transition (RL � 1000). An additional set
of simulations was performed at RL = 1081 to compare the transition behaviour in
the T3B case with that of a smaller value of FST length scale. The FST length scale is
found to have a profound impact on the mechanism of transition. While streamwise
streaks (Klebanoff modes) are observed at both values of the FST length scale, they
appear to have clear dynamical significance only at the smaller value of RL, where
transition is concomitant with streak breakdown. For the T3B case, turbulent spots
form upstream of the region where streaks could be detected. Spot precursors are
traced to quasi-periodic spanwise structures, first observed as short wavepackets in
the wall-normal velocity component inside the boundary layer. These structures are
reoriented to become horseshoe vortices, which break down into young turbulent
spots. Two of the four spots examined for this case had a downstream-pointing
shape, similar to those found in experimental studies of transitional boundary layers.
Additionally, our simulations indicate the importance of leading-edge receptivity for
the onset of transition. Specifically, higher fluctuations of the vertical velocity at the
leading edge of the plate result in higher levels of streamwise Reynolds stress inside
the developing boundary layer, facilitating breakdown to turbulence.
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1. Introduction
In many wall-bounded flows of engineering interest, it is desirable to control

the onset of laminar–turbulent transition. In aerospace applications, it may be
advantageous to maintain laminar flow over a major portion of an airfoil to reduce
drag. In low-pressure turbines, the state of the boundary layer flow has an impact on
its ability to negotiate adverse pressure gradients and, hence, influences the energy
efficiency of the turbine device. Transition to turbulence has therefore been the focus
of extensive research in the past century.

Traditionally, the study of transition in a boundary layer has been approached
from the point of view of linear stability. When the Tollmien–Schlichting (TS)
wave amplitude exceeds approximately 1% of the free-stream velocity, the perturbed
boundary layer develops secondary three-dimensional instabilities, which harbinger
the onset of transition. Because TS waves grow on a viscous time scale, they typically
attain the amplitudes required for secondary instability to set in only when the
boundary-layer Reynolds number is large, of the order of 106.

In many flows with a higher-amplitude disturbance environment, however, transition
is observed at Reynolds numbers of the order of 105 and does not involve the TS
mechanism. The term ‘bypass transition’ (Morkovin 1969) has been used to describe
various cases in which the TS waves are bypassed. The case of boundary-layer bypass
transition due to free-stream turbulence (FST) has received recent attention, and is
the focus of this study.

1.1. Experimental work on transition due to FST

Klebanoff (1971) observed that a Blasius boundary layer subjected to FST develops
low-frequency spanwise undulations in the streamwise velocity distribution within
the boundary layer. The amplitude of the peak response increased in proportion to
the FST amplitude, and grew larger in proportion to the boundary-layer thickness.
Kendall (1985) observed long streamwise streaks with small spanwise scales, which
he called Klebanoff modes. Matsubara & Alfredsson (2001) have reviewed several
experiments performed at the Royal Institute of Technology in Stockholm (KTH).
They observe that the spanwise spacing of streaks increases with the FST level,
and also slightly increases with the downstream distance. They suggested that the
spanwise scale selection occurs within the boundary layer. In a later publication,
however, Fransson & Alfredsson (2003) conclude that the selection process is more
complex and is influenced by the FST length scale, among other effects.

Fransson, Matsubara & Alfredsson (2005) performed additional experiments using
a wide range of FST intensities and length scales and made several important
observations. First, there is an initial region near the leading edge where the amplitude
of boundary-layer fluctuations grows more slowly than farther downstream, i.e. the
transient growth process begins a finite distance downstream from the leading edge.
Second, the disturbance energy increases in proportion to both the FST energy and
the flat-plate Reynolds number. Third, the transition Reynolds number is inversely
proportional to the FST energy. Finally, the extent of the transition zone increases in
proportion to the flat-plate Reynolds number. Although Fransson et al. (2005) varied
the FST length scale in a controlled manner, they did not sort their data based on the
length scale. Thus, the effect of the FST length scale is not addressed in their work.
Jonáš, Mazur & Uruba (2000) studied the effect of the FST dissipation length scale
on the onset of transition at the FST intensity of 3%. Based on their measurements
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of the intermittency, they noted that the onset of transition moved upstream with
increasing FST length scale, and that the transition region became longer. However,
their study did not address the effect of length scale on the details of the transition
process and, in particular, whether or not the FST length scale had any effect on the
physical mechanism(s) underlying the onset of transition.

1.2. Computational work

Large-eddy simulations (LES) and direct numerical simulations (DNS) of transition
in boundary layers have been slow to appear, owing to the large computational
requirements involved. The first DNS of boundary-layer transition due to FST in
a spatial formulation was performed by Rai & Moin (1993), who used a fifth-
order upwind biased finite-difference fractional-step compressible Navier–Stokes
solver to model the experiments of Blair (1983). The disturbance was generated
to match the von Kármán energy spectrum with a prescribed intensity and length
scale. The predicted location of transition onset showed reasonable agreement
with the experimental data, but the skin friction development farther downstream
was compromised because of under-resolution. Their work also indicated that the
resolution needed to simulate a transitional flow is at least as high as that for a
turbulent boundary layer.

Voke & Yang (1995) used a finite-volume conservative method to perform an LES
of boundary-layer transition, in an attempt to reproduce the experiments of Roach
& Brierley (1992). Although their simulations were severely under-resolved and the
FST properties were not matched to the experiment, they were able to provide
qualitative insights into the transition mechanism. The interaction of the wall-normal
FST component with the mean shear was proposed to be the key mechanism for the
production of Reynolds shear stress, which, together with the mean shear, drives the
production of the streamwise Reynolds stress.

A well-resolved DNS of FST-induced transition was performed by Jacobs &
Durbin (2001). To provide a somewhat realistic inflow condition without simulating
the flow around the leading edge, these authors chose to expand the FST and the
associated inflow disturbance profile in terms of the eigenfunctions of the linear Orr–
Sommerfeld operator (Grosch & Salwen 1978). With a fine, turbulent-like resolution
in the entire boundary layer, they obtained very good agreement with the T3A
experiment of Roach & Brierley (1992) at 3% FST intensity. Klebanoff modes were
found to be a prominent feature of their simulations, and were generated nonlinearly
by the penetration of the FST into the boundary layer. The spanwise streak spacing
was in agreement with the optimal results of Andersson et al. (1999). No evidence
of streak instability was reported in their work. Instead, low-speed streaks provide a
receptivity path between the FST and the boundary layer, but are otherwise irrelevant
to transition. The onset of transition was attributed to the direct penetration of the
free-stream disturbance into the perturbed laminar boundary layer.

Brandt, Schlatter & Henningson (2004) performed DNS of boundary-layer
transition due to FST with variable length scale and intensity. They used a similar
method to Jacobs & Durbin (2001) to generate the inflow disturbance, but also
included the Squire modes for the wall-normal vorticity. They found that for a given
FST intensity, increasing the FST length scale moves the onset of transition upstream.
The spanwise scale of streaks did not vary appreciably with the FST length scale.
Many aspects of their simulations are in qualitative agreement with the experiments
of Matsubara & Alfredsson (2001). Using flow visualizations, Brandt et al. (2004)
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conclude that streak breakdown and turbulent spot formation is caused by either of
two types of instability modes of low-speed streaks. The sinuous mode, characterized
by streak oscillations in the spanwise direction, was observed more frequently than
the varicose mode of instability.

Zaki & Durbin (2005) performed a theoretical and computational analysis of
boundary-layer bypass transition within the framework of coupled modes of the
linear Orr–Sommerfeld (OS) and Squire operators. The former are sheltered by the
boundary-layer mean shear to varying degrees: modes with low frequency and low
wall-normal wavenumber are able to ‘penetrate’ into the boundary layer and excite
the corresponding Squire modes, whereas high-frequency modes are not. This fact
prompted Zaki & Durbin to define a coupling coefficient to measure the effectiveness
of the OS modes in generating low-frequency boundary-layer ‘breathing modes’ via the
excitation of the Squire modes. Using DNS, they show that including a high-frequency
(low-penetrating) OS mode at the inflow boundary, in addition to a low-frequency
mode, is sufficient to cause transition to turbulence.

Nagarajan, Lele & Ferziger (2007) studied the influence of a blunt superelliptical
leading edge on bypass transition by LES. They employed compressible-flow equations
at low Mach number. FST was generated to match the von Kármán spectrum, and
several values of the FST intensity and length scale were used in the simulations. They
found that at low levels of FST and the superellipse aspect ratio AR = 10, transition
occurs via streak instabilities, similarly to those observed by Brandt et al. (2004). At
higher levels of the FST intensity and/or length scale, and the leading-edge aspect ratio
of AR = 6, they observed a different transition mechanism, characterized by localized
wavepacket-like oscillations in the spanwise velocity fluctuation, which grew in spatial
extent and amplitude as they were convected downstream, and eventually broke
down into turbulence. These wavepackets were traced to the stretching of free-stream
vortices around the leading edge: particularly strong vortices produce streamwise
vortical disturbances in the boundary layer that give rise to the wavepackets.
Nagarajan et al. showed that the wavepackets have markedly different properties
from the spot precursors found in the cases of breakdown due to streak instability.

1.3. Aim of the current work

In this study we perform high-resolution DNS of boundary-layer transition due to
FST of large amplitude and length scale. The flow around the plate leading edge is
explicitly computed within the simulation, and the FST characteristics, including the
FST length scale, are matched with the measured data from the T3B experiment of
Roach & Brierley (1992).

Our goal is to approximate the T3B experiment with sufficient fidelity that the
simulation database can be used to examine the underlying transition physics as
well as to guide the development of physics-based engineering prediction methods.
Two additional simulations are performed with a smaller FST length scale in order
to examine the effects of length scale variation on the transition mechanism. To
our knowledge, this is the first numerical study of bypass transition in which the
FST length scale is much larger than the transitional boundary-layer thickness. The
paper is organized as follows. Section 2 outlines the problem formulation, simulation
parameters, and validation. Section 3 describes the results, starting with a statistical
examination of the flow fields, moving on to a discussion of the effects of various FST
parameters on the transition characteristics, and finishing with a visualization study
of the transition process. Section 4 provides a discussion and concluding remarks.
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2. Problem formulation
We use the incompressible Navier–Stokes (NS) equations to perform DNS of

boundary-layer transition due to FST. The equations of continuity and momentum

∂uj

∂xj

= 0, (2.1)

∂ui

∂t
+

∂

∂xj

(ujui) = − 1

ρ

∂p

∂xi

+ ν∇2ui + fi, (2.2)

are discretized using a second-order-accurate finite-difference method on a staggered
Cartesian grid. The method fully conserves mass, momentum and kinetic energy
in the discrete sense (see Morinishi et al. 1998). The presence of the body forces
fi is due to the immersed-boundary method, described at the end of this section.
The coordinates x, y, and z refer, respectively, to the streamwise, wall-normal, and
spanwise directions. The velocity components in these directions are, respectively, u,
v and w. All grids used are uniform in the spanwise direction z, and stretched in the
streamwise and wall-normal directions to allow accurate resolution of boundary-layer
disturbances, particularly in the transitional region. The equations are integrated in
time using an explicit fractional time-step method (Chorin 1968; Kim & Moin 1985),
in which the convective and diffusive terms are advanced in time using the second-
order-accurate Adams–Bashforth method. The algorithm was parallelized using the
message-passing interface (MPI). The code has been previously validated for a variety
of turbulent (Balaras, Benocci & Piomelli 1995; Balaras, Piomelli & Wallace 2001),
re-laminarizing (Piomelli, Balaras & Pascarelli 2000), and transitional (Ovchinnikov,
Piomelli & Choudhari 2006) flows. More details on the implementation can be found
in these references.

2.1. Determination of FST length scale

The primary goal of the current investigation was to study the mechanism of bypass
transition in a realistic high-intensity FST environment. Thus, the configuration of
the main simulations was chosen to approximate the wind tunnel experiment T3B by
Roach & Brierley (1992), which involved an FST amplitude of 6% of the free-stream
velocity at the leading edge.

The available experimental data include the evolution of the FST intensity with the
streamwise distance, but not its integral length scale, L11, defined as

L11 =

∫ ∞

0

u′(x)u′(x + r)

u′(x)u′(x)
dr. (2.3)

In experimental measurements of homogeneous turbulence that use hot-wire
anemometry, L11 is approximated from the integral time scale using Taylor’s frozen
turbulence hypothesis as

L11 � Uconv

∫ ∞

0

u′(t)u′(t + s)

u′(t)u′(t)
ds. (2.4)

In the above, u′ denotes the free-stream velocity fluctuation, Uconv , the local mean
velocity in the frozen turbulence approximation, and the overbar the long-time
average. The energy dissipation length scale, defined as

Lk = − k3/2

U∞dk/dx
, (2.5)
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Figure 1. Evolution of the FST intensity. , Case T3Bs; , Case T3Bf; , Case
SLSs; , Case SLSf; �, T3B experiment of Roach & Brierley (1992); +, Power law
y = C(x − x0)

α with C =1.4, x0 = −75, α = −0.7; �, Power law y = C(x − x0)
α with C = 3.0,

x0 = −370, α = −0.65.

where k denotes the turbulent kinetic energy, can be computed directly from the
streamwise FST intensity evolution. According to this definition, the smaller
the turbulence decay rate, the larger the associated length scale value, consistent
with the conventional spatial understanding of the length scale.

In the following discussion, R denotes the half-thickness of the plate, and is chosen
as the length scale for non-dimensional quantities. (This choice of normalization is
made here for convenience; we do not assert that R is a physically relevant parameter
in transition.) R is also equivalent to the leading-edge radius of the plate in the T3B
experiment.

For the T3B experimental data, assuming isotropy of the incoming FST, we found
Lk = 25R at the leading edge. To match the measured FST decay in the experiment,
we chose L11 = 14R; this condition also ensures that Lk =25R, as derived from the
experimental data. We note that our value for L11 is in fair agreement with a recent
empirical estimate of L11 = 16.7R (Johnson & Ercan 1999), which was based on the
data of Roach (1987). Two simulations were carried out with L11 = 14R. From this
point on, we will refer to these as the T3B simulations.

Two additional simulations were performed in this study. The essential difference
from the T3B simulations is that the FST integral length scale was set to 2.3R,
which is similar to the values used in other numerical investigations of FST-induced
bypass transition. These two simulations will be denoted as cases SLS, in which
SLS abbreviates ‘small length scale’. The main purpose of the SLS simulations is
to compare the transition features in this well-studied regime to the T3B case. The
computational details of the four simulations, denoted by T3Bs, T3Bf, SLSs, and
SLSf, are described in the next section.

In the simulations of Brandt et al. (2004), L11 was varied between 1R and 3R,
when converted to our units. (The conversion was made by comparing the values of
the Reynolds number based on the FST length scale.) This value was specified at
Re∗

δ =300 in their simulation and not upstream of the leading edge, as in ours. From
the data of Jacobs & Durbin we estimated Lk to be 3.1R. The leading edge was not
included in the computational domain of the simulations discussed in both references.
The evolution of the FST intensity for the T3B experiment and our simulations is
shown in figure 1. Negative values of x correspond to locations upstream of the
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Figure 2. Computational configuration and boundary conditions; (a) domain with
symmetry plane; (b) full domain.

leading edge, and the irregular behaviour near the inflow plane is due to the initial
adjustment of a synthetic disturbance field. A comparison of the streamwise evolution
of the integral length scale with the corresponding power laws is shown in an Appendix
available with the online version of the paper, § A.1.

2.2. Computational domains

The two types of computational domain used for our simulations are illustrated in
figure 2, and simulation parameters are summarized in table 1. Because the T3B
simulations presented in this study required substantial computational resources, two
approximations were made to decrease the cost of computation.

First, each computational domain was split into two overlapping blocks along the
streamwise direction. The first box contained the flat-plate superellipse, and had very
fine resolution near the plate leading edge. A short distance downstream, at x =15
and x =20 for the SLS and T3B cases, respectively, a time-sequence of planes of
velocity was stored and used as the inflow condition for a second computational
domain. This domain had fewer points in the wall-normal direction, but maintained
the fine streamwise resolution required to resolve the transition zone. The multi-
block approach has been successfully used in the past (Huai, Joslin & Piomelli,
1997). However, strictly speaking, it violates the ellipticity of the incompressible NS
equations (the pressure in the two blocks is not mutually coupled). The errors due
to multi-block splitting were estimated by Ovchinnikov et al. (2006), in the related
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Largest grid size at wall
Case L11 ReL Lx × Ly × Lz nx × ny × nz �x+ × �y+

wall,max × �z+

SLSs Block I 2.3 1081 38 × 31 × 23 288 × 222 × 192 10 × 0.6 × 3.5
Block II 538 × 30 × 23 1472 × 160 × 192 12 × 0.7 × 3.8

SLSf Block I 2.3 1081 38 × 62 × 23 288 × 444 × 192 9.5 × 0.6 × 3.5
Block II 538 × 30 × 23 1472 × 160 × 192 12 × 0.7 × 3.6

T3Bs Block I 14 6580 120 × 67 × 67 504 × 240 × 512 10 × 0.8 × 4.0
Block II 330 × 66 × 67 882 × 170 × 512 10 × 0.8 × 3.5

T3Bf Block I 14 6580 120 × 133 × 67 480 × 421 × 540 10 × 0.8 × 3.8
Block II 330 × 66 × 67 864 × 170 × 540 10 × 0.8 × 3.3

Table 1. Simulation parameters. The FST integral length scale is reported at the leading edge.
The FST intensity at the leading edge is 5.9% and 6.7% for cases T3B and SLS, respectively.
The location of the inflow boundary of the first simulation box was at x = −15 and x = −65
relative to the plate leading edge for cases SLS and T3B, respectively. All lengths are shown in
the units of the plate half-thickness, R. ReL is the Reynolds number based on the free-stream
velocity, U∞, and L11.

context of boundary-layer bypass transition due to a cylinder wake, and were found
to be insignificant.

Even with the multi-block approach, computing the flow around the entire leading
edge turned out to be costly for the T3B case: the calculation would require around
190 million points. This high cost was primarily due to the need for a domain that
is large enough to accommodate the FST integral scales, yet resolved finely enough
to capture the smallest boundary-layer scales. Thus, to perform a T3B calculation
with good statistical convergence, we chose to make the second approximation that
the mid-plane of the plate can be represented as a plane of symmetry. The symmetry
assumption halves the computational cost in the first block, reducing the overall cost
to 140 million points. We will refer to this calculation as the T3Bs case. To have a
qualitative indicator of the accuracy of the symmetry approximation, we carried out
another simulation using the entire domain, the T3Bf case, but for only one half of
the integration time of the T3Bs case. The corresponding statistical sample is not as
well converged, and to facilitate comparisons between T3Bs and T3Bf cases, we apply
a low-pass filter to the T3Bf data in the streamwise development plots.

To further quantify the errors due to the symmetry approximation, we conducted the
SLS simulations with the smaller FST length scale, L11 = 2.3, both with and without
the symmetry condition in the first block. Simulating the SLS case on a full domain
is affordable because of the low value for the FST length scale. In the remainder of
this paper, SLSs refers to the SLS simulation with the symmetry condition, and SLSf
refers to the SLS simulation preformed on the full domain.

2.3. Leading edge geometry

The leading edge of the flat plate in the Roach & Brierley (1992) experiment was
asymmetrical with a circular tip of radius 0.75 mm. The Reynolds number based on
the average free-stream velocity of 9.4 m s−1 and the leading-edge radius was 470. In
our simulations, we used a symmetrical superellipse with an aspect ratio (AR) of 6.0
to model the leading edge of the plate. The geometry for the superellipse used in our
study is given by (

1 − 1

AR

x

R

)4

+

(
y

R

)2

= 1. (2.6)
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In all of our simulations, the Reynolds number based on the free-stream velocity
and the minor half-axis of the superellipse, R, was fixed at 470. The minor axis of
the superellipse corresponds to the plate thickness. Note that in order to obtain the
Reynolds number based on any length scale expressed in the units of R, one simply
multiplies that length scale value by 470. For example, the Reynolds numbers based
on the FST length scale for cases T3B and SLS are 6580 and 1081, respectively.

The above geometry was motivated by the availability of two-dimensional numerical
data for flow validation, and the assumption that the differences in leading-edge
geometry would be less significant when the estimated length scale of the FST is
much larger than the leading-edge radius. We note that the symmetry of the leading-
edge leads to a suction peak that was probably absent in the reference experiment.
However, the experimental configuration cannot be reproduced exactly because the
test plate had a flap attached to the end, which cannot be simulated easily. Some
discussion of leading-edge-geometry effects measured in wind tunnel experiments can
be found in Klingmann et al. (1993) and Fransson (2004). Validation of the immersed-
boundary representation of the leading edge is described in the next section.

2.4. Boundary conditions

The following boundary conditions were applied:
(a) The inlet velocities are imposed by adding a zero-mean perturbation field

to the uniform mean flow U =(U∞, 0, 0). The disturbance was generated using the
algorithm due to Rogallo (1981) as described by Jacobs & Durbin (2001), but with
Fourier modes, instead of Orr–Sommerfeld modes. The disturbance field has the
model spectrum due to von Kármán, and is designed to be homogeneous, isotropic,
and divergence-free to avoid large pressure fluctuations near the inflow plane. For
all four cases, the FST amplitude in the vicinity of the leading edge was around 6%
of U∞; the three velocity r.m.s. values were within 10% of T u, which was defined as
(
√

〈u′u′〉 +
√

〈v′v′〉 +
√

〈w′w′〉)/3. Thus, the FST generated by the Rogallo algorithm
is approximately isotropic. The angle brackets denote Reynolds averaging, and the
prime a fluctuation from the mean. Further details on the inflow generation can be
found in Ovchinnikov, Piomelli & Choudhari (2004).

(b) The interface condition between the first and second blocks was obtained by
interpolating velocities from the first box onto the wall-normal grid of the second
box. The plane from which velocity data were extracted was located at x = 15 for
cases SLSs and SLSf, and x =20 for cases T3Bs and T3Bf. The streamwise distances
are quoted relative to the leading edge of the plate.

(c) At the outlet of each computational block, a convective outflow boundary
condition was applied to each velocity component (Orlanski 1976). Simulation results
in the last 10–15% of each block were discarded in order to eliminate the effects of
proximity to the outflow boundary.

(d) In the spanwise direction, z, periodic conditions were used.
(e) The no-slip condition was imposed along the plate surface, whereas a symmetry

condition was used upstream of the plate leading edge within the first block of cases
SLSs and T3Bs.

(f) Along the free-stream boundary of the first block of each simulation, we
imposed slip-wall conditions, and at the free-stream boundary of the second block,
we applied ∂u/∂y = 0, v = dδ∗/dx, ∂w/∂y = 0, where δ∗ is the displacement thickness
computed for the Blasius velocity profile at each location. The boundary condition on
the v-component provides the correct mass flux through the top wall to account for
the Blasius boundary-layer growth in the zero-pressure-gradient regime. It becomes
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Figure 3. Comparison of surface properties for a two-dimensional flow over a superellipse:
(a) pressure coefficient, Cp; (b) wall vorticity, ωz, , current immersed-boundary simulation;

, simulation by Lin, Reed & Saric (1992).

less accurate in the transitional and turbulent boundary-layer regions, but does not
result in significant free-stream acceleration. In all four simulations, the acceleration
coefficient, K = −(ν/U 2

∞)(dU∞/dx) was of the order of 10−7 for both blocks. The
value of K at which a turbulent boundary layer is expected to re-laminarize is around
3.0 × 10−6 (Spalart 1986). Since the value of K in our case is an order of magnitude
lower, we do not expect the acceleration to have an appreciable effect on the onset
of transition.

To satisfy the no-slip boundary conditions on the superellipse surface, we employ
the immersed-boundary method of Fadlun et al. (2000), following the implementation
of Balaras (2004). In this procedure, the body forces, fi , are non-zero only in grid-
cells adjacent to the surface, and are assigned in such a way that the velocity on
the surface is zero to second-order accuracy. The immersed-boundary method, as
described above, has been extensively validated in laminar and turbulent flows. For
more details on the implementation, the reader is referred to Fadlun et al. (2000) and
Balaras (2004).

To ensure that the immersed-boundary representation of the superelliptical leading
edge was accurate, we performed a two-dimensional simulation of the flow past a
superellipse with AR = 6, described by equation (2.6). The computational domain was
similar to the one in figure 2(a), and extended over 25 and 16 units in the x- and
y-directions, respectively, and was resolved with 1075 and 300 cells in the respective
directions. The lengths were normalized by the minor half-axis of the superellipse,
and the Reynolds number based on this length scale was 2400. This geometry and
Reynolds number parameter was chosen to match the calculations of Lin, Reed &
Saric (1992), who used an NS solver on a curvilinear grid. Comparisons of the pressure
coefficient, Cp = 2(p − p∞)/ρU 2

∞, along the surface of the ellipse, and the vorticity, ωz,
are shown in figure 3. The overall agreement is good. The small discrepancy may be
due to the extrapolation of pressure and velocity values from the grid nodes onto the
immersed boundary, or the differences in the spatial resolution.

Finally, we note that the immersed-boundary representation of the superellipse was
only necessary in the first block of each simulation. The second box was constructed
such that its bottom boundary coincides with the surface of the plate.

2.5. Grid requirements

The computations performed in this work required long integration times. A typical
simulation required a month of clock time on an 8-processor Beowulf cluster (6000
CPU-hours). We were thus unable to perform a grid-refinement study. Ovchinnikov
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et al. (2004), however, performed calculations of bypass transition in a configuration
similar to the one studied here (their calculations did not include the leading edge and,
therefore, were much less demanding computationally). They observe that inadequate
streamwise resolution in the transition region may lead to a premature and abrupt
transition, probably because energy is aliased into the unstable scales due to under-
predicted dissipation. They obtained grid-converged results with the grid spacings,
normalized by the friction velocity uτ and the viscosity ν, of �x+ � 7–12, �y+

wall,max � 1
and �z+ � 2.5–3. We used similar values in our calculations, as reported in table 1.
Note that these spacings are typical of turbulent flow calculations, and are smaller
than those used by Jacobs & Durbin (2001) in their simulations of bypass transition.
They used a finite-difference algorithm with second-order spatial accuracy that was
similar to the one employed in this study.

To ensure that the computational domains were sufficiently large in the spanwise
direction, we computed spanwise correlations of the velocity fluctuations. These will
be discussed in detail in § 3.3. For the SLS simulations, in which L11 = 2.3, the spanwise
correlation functions approach the zero line well within the computational domain.
For the T3B case, the correlation function is not exactly zero within the domain.
However, an additional simulation performed on a domain that was twice as large
in the spanwise and wall-normal directions, but without the flat plate, showed that
the FST decay rate was unchanged. Therefore, we are confident that the external
free-stream environment has been adequately captured.

2.6. Mean and instantaneous quantities

In this section, we recall several definitions that will be useful for the remainder of
this paper. Mean quantities are defined as

F = 〈f (x, y)〉 =
1

Lz

1

T

∫ Lz

0

∫ t

t−T

f (x, y, z, τ ) dτ dz. (2.7)

The mean skin friction coefficient

Cf =
τw

ρU 2
∞/2

(2.8)

is an indicator of transition onset since it increases markedly across the region of
laminar–turbulent transition. In this equation, τw is the mean wall shear stress, defined
as

τw = μ

〈
du

dy

〉∣∣∣∣
y=0

. (2.9)

The shape factor, H , is defined as H = θ/δ∗, where δ∗ and θ are, respectively, the
displacement and momentum thicknesses, given by

δ∗ =

∫ yedge

0

(
1 − 〈U〉

Uedge

)
dy; θ =

∫ yedge

0

〈U〉
Uedge

(
1 − 〈U〉

Uedge

)
dy. (2.10)

The integration in (2.10) is performed up to the edge of the boundary layer, yedge ,
taken to be the wall-normal location at which the mean U -velocity gradient falls below
0.01. The effective free-stream velocity, Uedge, is the mean velocity at this location. H

is also an indicator of transition because the momentum thickness, θ , rises steeply as
the flow passes from the laminar to the turbulent regime.

In § 3.4 we will present three-dimensional visualizations of transitional flow fields.
To identify vortical structures, we will plot instantaneous isosurfaces of the quantity
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Figure 4. Evolution of the skin friction coefficient, Cf . , case T3Bs; , case T3Bf;
, case SLSs; , case SLSf; �, T3B experiment of Roach & Brierley (1992); ,

Blasius Cf . The start of the boundary layer, i.e. the location x =0, is taken to be the tip of the
superellipse.

Q defined as

Q = − ∂ui

∂xj

∂uj

∂xi

. (2.11)

2.7. Statistical convergence

The governing equations were advanced in time until a statistically stationary state was
reached. For cases SLSf, SLSs and T3Bs, flow statistics were subsequently accumulated
for a time period required for the mean flow to traverse the entire domain three times.
Convergence of the statistical sample in these cases was verified by comparing the stat-
istics based on one half of the time history with those obtained using the entire sample.
First-order quantities differed by less than 3%, second moments by less than 6%. For
case T3Bf, which was the most computationally intensive, one-and-a-half flow-through
periods were recorded. Statistics from this calculation may thus be less reliable.

3. Results
We begin by comparing simulation statistics from cases T3B to the available

experimental dataset. Noting discrepancies between cases T3Bs and T3Bf, we examine
the effects of the symmetry condition on the transition mechanism and onset location.
The discussion reveals the importance of receptivity to fluctuations in the wall-
normal velocity at the leading edge of the plate, particularly for cases T3B. We then
characterize the transition mechanism for the T3B cases, and demonstrate that it
is qualitatively different from that of the SLS cases, which is accompanied by the
breakdown of Klebanoff modes.

3.1. Comparison of T3B simulations with experiment

The streamwise development of the computed skin friction coefficient, Cf , is shown
in figure 4. The approximate locations of transition onset are x = 100, x =60, x = 95,
and x =75 for cases SLSs, SLSf, T3Bs and T3Bf, respectively. The corresponding
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Figure 5. Evolution of (a) the shape factor, H ; (b) the boundary-layer thickness, δ99 (shown
only for cases T3B). , case T3Bs; , case T3Bf; , case SLSs; , case SLSf;
�, T3B experiment of Roach & Brierley (1992).

Rex values are 47 400, 28 440, 45 030, and 35 550. The location of transition onset
is nominally defined as the x-location at which the skin friction is at its minimum
(young turbulent spots are often observed upstream of this location). The initial
mismatch between the Blasius Cf and the simulation data is due to (i) the fact that
Blasius similarity is invalid close to the leading edge, (ii) the imposition of the free-slip
boundary condition at the top wall of the first block of each simulation, and (iii) the
large amplitude of the FST.

The boundary-layer shape factor, H , is shown in figure 5(a). H equals 2.6 for
Blasius flow and lies around 1.4 for turbulent boundary-layer flow at low values
of Reθ . The shape factor is an inverse measure of the boundary-layer momentum,
which increases in the turbulent regime. The differences between the plots in figure
5(a) are due to different onsets of transition. Figures 4 and 5(a) show that the
T3Bs simulation captures the onset and the progress of transition well: x = 100
(Rex = 47 000). However, the onset of transition for case T3Bf occurs significantly
farther upstream at x = 75 (Rex =35 550). This finding is somewhat surprising, since
case T3Bf should be a better approximation to the T3B experiment. A detailed
examination of the differences between cases T3Bs/f, and also cases SLSs/f, is
performed in the next subsection, and reveals the influence of the symmetry condition
on the development of boundary-layer Reynolds stress.

Figure 5(b) shows the development of the boundary-layer thickness, δ99, for cases
T3B. The good agreement between the simulation and experiment indicates that the
rate of boundary-layer growth is captured well. The reason the predicted δ99 agrees well
with the experiment for both T3Bs and T3Bf cases, but only the T3Bs case shows the
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Figure 6. Comparison of velocity and turbulent intensities for T3B simulations vs. experiment.
(a) Mean streamwise velocity, u; b) urms; c) vrms; d) wrms; lines: simulation; , T3Bs ,
T3Bf; symbols: experiment; the dashed line in (b–d) marks the location of the boundary-layer
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Rex =91 482; +, x = 260, Rex = 123 240; in (a) successive curves are shifted in the vertical
direction by 10, and in (b), (c) and (d), by 0.05.

correct shape factor evolution, is that the latter depends on the momentum thickness
which increases rapidly across transition, which was observed earlier in the T3Bf case.

Further comparison between the T3B simulations and the experiment is shown in
figure 6(a–d). In figure 6(a), velocity profiles corresponding to the T3Bs simulation
agree well with the experimental data across the range x ∈ [60, 260], consistent
with the agreement in the Cf curve. Figure 6(b–d) shows that the evolution of
boundary-layer turbulence intensities is also captured well. The dominant component
of the boundary-layer perturbation is u′ and its profiles agree with the measurements
at all four stations shown. The v′ and w′ profiles in the outer region of the
boundary layer also agree well. However, noticeable discrepancies are observed in
the near-wall region for the v′-component, particularly at the upstream locations.
Fransson & Westin (2002) investigated errors in hot-wire X-probe measurements in
the transitional boundary layer by comparing hot-wire and laser Doppler velocimetry
(LDV) measurements. A near-wall peak of vrms was present only in the hot-wire
dataset, and they concluded that it was an artefact of the hot-wire measurement
technique. It can also be seen that the T3Bf v′ data give a better match with the
experiment. However, judging from the Cf curve in figure 4, at this location the T3Bf
dataset corresponds to a later stage in the transition than the experiment, so this
agreement is probably coincidental.
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The development of the turbulent kinetic energy (TKE) budget across the
transitional region is qualitatively similar to that described by Ovchinnikov et al.
(2006), and is relegated to § A.3 of the online supplement.

Finally, we mention the movement of the stagnation line in simulations T3Bf and
SLSf. In both cases, the location of the stagnation point at any spanwise location
along the stagnation line was in the range s ∈ [−0.1, 0.1], where s is the arclength
measured from the axis of the leading edge. Time evolution of stagnation point
location at a fixed spanwise coordinate showed a quasi-periodic signal with period
of approximately 25 in both cases. The length scale of the spanwise variation in the
instantaneous stagnation line appears to be proportional to the length scale of the
oncoming FST. These observations are summarized in figures 21 and 22 in the online
supplement § A.1

3.2. The effect of symmetry condition: insights into leading-edge receptivity

Since we observed significant differences in transition onsets between cases T3Bs and
T3Bf, in this section we examine the differences between the two simulations. Our
focus is on the T3B test case, and important differences from the SLS case will be
highlighted at the end of this section.

Cases T3Bs and T3Bf were identical except for the symmetry boundary condition
upstream of the leading edge in simulation T3Bs. Even though the FST intensity,
shown in figure 1, evolves almost identically for the two cases, the Reynolds stress
magnitudes at the boundary-layer edge are different. In figures 7(a) and 7(b), we
compare profiles of the streamwise Reynolds stress 〈uu〉 and wall-normal Reynolds
stress 〈vv〉, respectively, at several streamwise locations. The short horizontal lines
indicate the local boundary-layer thickness, δ99.

In § 3.1 we observed that the location of transition onset is farther downstream
in the symmetry-plane case T3Bs. However, figure 7(a) shows that for x � 20, the
streamwise component of the Reynolds stress at the boundary-layer edge is about
twice as high in the T3Bs simulation. The difference in the free-stream TKE between
the two cases is diminished by the wall-normal component of the Reynolds stress,
which becomes stronger for the T3Bf simulation away from the wall (see figure 7b x =
2, 5, 10) so that the turbulence intensities in the free stream are the same, consistent
with the streamwise evolution of T u (cf. figure 1). The spanwise component of the
Reynolds stress, 〈ww〉, is very similar between the two cases and is not shown in
figure 7. Although in the T3Bf case, 〈uu〉 is lower outside, inside the boundary layer it
has a sharp peak that is higher in magnitude than that of case T3Bs. The most likely
explanation for this behaviour is in the levels of 〈vv〉 in the vicinity of the flat-plate
leading edge.

Exactly at x = 0, 〈vv〉 is approximately six times higher for the T3Bf case than for
the T3Bs case. However, at x = 0, 〈vv〉 expressed in Cartesian coordinates corresponds
to the component of Reynolds stress tangent to the flat-plate surface. We believe that
the 〈uu〉 peak at locations x = 2, 5, 10 for case T3Bf probably arises from the
advection of 〈vv〉 at x = 0 along the curvilinear coordinate of the superelliptical
surface. In figure 23 in the online supplement § A.2, we compare the components of
the Reynolds stress tangent and normal to the flat plate for cases T3B and SLS near
the wall. It can be seen that the major effect of the symmetry condition is to remove
tangential Reynolds stress in the leading-edge vicinity. The Reynolds stress farther
along the surface, which corresponds to 〈uu〉, is also reduced. These observations
suggest that the leading edge couples velocity fluctuations normal to the plate axis at
the leading edge to initial levels of the streamwise Reynolds stress in the developing
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Figure 7. Profiles of (a) streamwise Reynolds stress 〈uu〉, and (b) the wall-normal Reynolds
stress 〈vv〉. From left to right, the plots correspond to x = 0, 2, 5, 10, 20, 75, 250; Rex =0; 940,
2350, 4700, 9400, 35250, 117500. , Case T3Bs; , Case T3Bf; the short horizontal
lines indicate the local boundary-layer thickness δ99. On the x-axis, the profiles are offset by
0.01 for (a). In (b) the first two plots are offset by 0.004 for clarity and the the rest by 0.002.

boundary layer. By employing the symmetry condition, we attenuate this mechanism
significantly, thus decreasing the intensity of streamwise velocity perturbation in the
downstream boundary layer. We also expect that this receptivity mechanism will
be sensitive to the geometry of the leading edge, for example through the effect of
leading-edge curvature.

In contrast to its discrepant behaviour at the leading edge, at locations downstream
of the leading edge, 〈vv〉 levels inside the boundary layer are almost the same for the
T3B cases with the exception of the boundary-layer 〈vv〉 peak at x = 75. This peak,
however, is due to the onset of transition, which is closer upstream for case T3Bf.
Voke & Yang (1995) performed a large-eddy simulation of boundary-layer bypass
transition and proposed a ‘distributed’ receptivity mechanism, in which the wall-
normal Reynolds stress along the flat surface of the plate drives the production of the
Reynolds shear stress. However, the fact that the levels of 〈vv〉 show little difference
between our cases T3Bs/f suggests that such a mechanism does not account for
the discrepancies between the two T3B cases. We also note that our observations
neither support nor challenge the conclusions of Voke & Yang (1995), but point to
an additional mechanism that operates near the leading edge.

The foregoing discussion also suggests possible explanations for the early transition
observed for case T3Bf. One possibility is that the wall-normal turbulence intensity
i.e. T v) in the experiment of Roach & Brierley (1992) is significantly lower than T u.
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, x = 73; , self-similar profiles from wind tunnel measurements of Matsubara &
Alfredsson (2001).

Another possibility is that in the experiment, the receptivity to 〈vv〉 at the leading edge
is lower because of its different shape. Roach & Brierley (1992) report, however, that
the FST generated using their grids was ‘extremely isotropic’. The second hypothesis
should be investigated in a future study, where the curvature of the leading edge, for
example, is varied while FST parameters are kept fixed.

In figure 8(a, b) we show wall-normal urms profiles for the two T3B cases, normalized
by the corresponding boundary-layer maxima. In figure 8(b), which corresponds to
case T3Bf, the wall-normal peak in urms is approximately at 1.3δ∗, consistent with
the experiments of Matsubara & Alfredsson (2001), whereas in figure 8(a), which
corresponds to case T3Bs, this peak is at �1.65. The level of urms above the boundary
layer δ∗ � 3 is also significantly higher in case T3Bs. We ascribe these discrepancies to
the different levels of boundary-layer contamination at the leading edge, which alter
the development of the streamwise Reynolds stress.

In the light of the differences in the development of the Reynolds stresses between
cases T3Bs and T3Bf, one may also expect to see significant differences between the
respective transition mechanisms. To qualify the differences, we studied the flow fields
for these cases visually. The details of this study are presented in § 3.4. An important
conclusion that we state here is that, despite the differences in the streamwise Reynolds
stress development, cases T3Bs/f undergo transition by the same mechanism.

We close this section with a discussion of the effect of the symmetry condition
on cases SLSs/f. Analogous to the T3Bs/f cases, the symmetry condition results
in a delayed onset of transition (figure 4). Specifically, transition begins at x = 110
(Rex = 52 000) for case SLSs, in comparison with x =60 (Rex = 28 000) for case SLSf.

In figure 9(a, b) we show the profiles of streamwise and wall-normal Reynolds
stresses for cases SLSs/f. As observed for cases T3Bf and T3Bs, one sees a sixfold
difference between the amplitudes of 〈vv〉 at x = 0. However, the behaviour of the
streamwise Reynolds stress in the SLS cases is different from the T3B cases: 〈uu〉 is
higher for case SLSf at all wall-normal locations, and the wall-normal urms profiles
in both cases exhibit a peak at the same location. Figure 27(a, b) in the online
supplement § A.4 shows that this location coresponds to y =1.3δ∗.

Figures 10(a) and 10(b) show the evolution of the maximum streamwise Reynolds
stress, 〈uu〉, inside the boundary layer. In figure 10(b), the data are normalized using
the turbulent kinetic energy at the boundary-layer edge. The agreement between cases
SLSs and SLSf up to x � 30 in figure 10(b) suggests that for the low FST length
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Figure 9. Profiles of (a) streamwise Reynolds stress 〈uu〉, and (b) the wall-normal Reynolds
stress 〈vv〉. From left to right, the plots correspond to x = 0, 2, 5, 10, 20, 75, 250; Rex = 0, 940,
2350, 4700, 9400, 35 250, 11 7500. , case SLSs; , case SLSf; the short horizontal
lines indicate the local boundary-layer thickness δ99 On the x-axis, the profiles are offset
by 0.01 for (a). In (b) the first two plots are offset by 0.004 for clarity and the rest
by 0.002.

scale, L11 = 2.3, the initial disturbance amplitude is proportional to the turbulence
intensity at the boundary-layer edge. Brandt et al. (2004) report similar behaviour in
their simulations.

Interestingly, figure 10(a) shows that for all cases, rapid increase of the Reynolds
stress levels is preceded by a region of slower growth, and that this region has
larger extent in the T3B cases. Fransson et al. (2005) also observed regions of slower
initial growth of urms before a linear increase. They explained this phenomenon by
a ‘receptivity distance’, i.e. a distance needed for the adjustment of discrepant length
scales in the free stream and the boundary layer. Our results are consistent with this
possibility, in the sense that the receptivity distance increases with the degree of scale
mismatch (e.g. L11 vs. δ99), which is greater for case T3B.

From these observations, we conclude that at the lower FST length scale of case
SLS, the effect of the symmetry condition was primarily to delay the onset of transition
without modifying qualitatively the nature of the Reynolds stress evolution. We may
also speculate that the reason for the different behaviour in cases SLS from T3B
(i.e. evolution of 〈uu〉) arises from higher distributed receptivity of the boundary
layer to lower-length-scale turbulence. According to this conjecture, the ‘deficit’ in
the streamwise Reynolds stress inside the developing boundary layer caused by the
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Figure 10. Evolution of the maximum streamwise Reynolds stress inside the boundary layer;
(a) normalized by U∞; (b) normalized by the TKE at the boundary-layer edge: , case
T3Bs; , case T3Bf; , case SLSs; , Case SLSf; �, T3B experiment of Roach &
Brierley (1992). The asterisks indicate the onset of transitional Cf rise corresponding to x = 95,
x =75, x = 100 and x = 60 for cases SLSs, SLSf, T3Bs and T3Bf, respectively.

symmetry plane would be replenished by contamination from the free stream more
rapidly in case SLS than T3B. For case T3B, this contamination is retarded by the
large disparity between the FST and boundary-layer length scales.

A qualitative comparison of SLSs/f flow fields is made in the online supplement
figure 28 (§ A.4), which shows instantaneous contours of the streamwise velocity
fluctuation in the (x, z)-plane inside the boundary layer. A higher-amplitude near-wall
disturbance environment near the leading edge is seen for case SLSf, and the corres-
ponding boundary layer appears more disturbed throughout the domain, consistent
with the more rapid transition onset indicated in figure 4. Aside from the differences in
the overall perturbation levels, the two flow fields are very similar. This suggests that
the underlying transition mechanism is the same in both instances. At this FST length
scale (L11 = 2.3) and range of FST intensities, transition appears to be accompanied
by Klebanoff modes. Their role in transition will be briefly discussed in § 3.4.

3.3. Two-point correlations

Two-point spanwise correlations of the velocity signal can provide information on the
dominant spanwise length scale of the flow. In transitional and turbulent boundary
layers, correlations of the streamwise velocity (u′) are used to estimate the average
spanwise separation between adjacent streamwise streaks. This distance is taken to
be the distance to the first minimum of the correlation function. In figure 11(a, b) the
two-point correlation functions of u′ are shown for cases SLSs and T3Bs, respectively.
The corresponding plots for case SLSf and T3Bf are qualitatively similar. The dashed
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Figure 11. Spanwise correlation functions of the streamwise velocity fluctuations; the z-axis
is truncated by 50% in each case to focus on the region of significant variation. (a) Case
SLSs, Ruu; (b) case T3Bs, Ruu; , correlation functions at the location of maximum
boundary-layer urms; , correlation functions at the boundary-layer edge; from bottom to
top: x =38, Rex =19 000; x = 96, Rex = 47 800; x = 154, Rex = 76 800; x =308, Rex = 153 600.

lines represent the correlation function at the boundary-layer edge, and the solid lines
the correlation function at the location of maximum urms inside the boundary layer.
The correlation function at the boundary-layer edge indicates a much larger spanwise
scale for case T3Bs, as expected. (Note the different ranges of abscissa in figures 11a

and 11b.)
The solid curve that corresponds to x = 96 (Rex = 45 000) is located near the onset

of skin friction growth for both cases. It can be seen that the spacing between the
streaks is approximately 3.4 (4.1δ∗) for the T3Bs case, compared to about 1.8 (2.8δ∗)
for case SLSs. The solid curves corresponding to x = 308 (Rex = 145 000) show that in
the fully turbulent region, the streak spacing is the same for the two cases, regardless
of the differences in the upstream development, indicating a universal turbulent
equilibrium. In wall units, defined by x+ = xuτ/ν, where uτ =

√
(1/ν)d〈U〉/dy is the

friction velocity, this spacing is 100, consistent with a turbulent boundary layer. These
streaks are certainly not the same as their counterparts in the transitional region.
Recall from figure 7(a) that the location of the 〈uu〉 maximum moves close to the
wall at the onset of turbulence.

Figure 12(a) shows the streamwise evolution of the location of the minimum
of the correlation function. The figure shows that for cases SLSs and SLSf the
transitional streak spacing of � 2 is established by x = 75. For cases T3Bs and
T3Bf, the appearance of streaks (with separation � 3.4 and 3), is delayed to x � 100
and 70, respectively. This was also confirmed by observing the flow field directly.
It is interesting to see that while for the T3B cases there is a marked shift in
the streak separation distance across the laminar–turbulent transition region, for
cases SLSs and SLSf the separation distance does not change significantly. This
observation suggests that there is no universal value for streak separation in the
perturbed boundary layer. Rather, it may be determined by the FST length scale.
Fransson & Alfredsson (2003) performed controlled experiments of boundary-layer
transition with and without distributed suction and found that the spanwise streak
spacing was virtually unchanged between the two cases, despite a factor 2 reduction
in the boundary-layer thickness for the case with suction. They suggested that the
scale selection process involves the free-stream length scales. Figure 12(a) shows that
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within the transitional and turbulent regions, the streak spacing slowly increases with
the downstream distance. Figure 12(b) shows that it slowly decreases relative to the
local boundary-layer displacement thickness. Both of these findings are in qualitative
agreement with Matsubara & Alfredsson (2001). However, in their experiments, the
distance to the correlation function minimum in the transition region tends to 3δ∗,
whereas our values for cases SLSs and SLSf are closer to 2δ∗. For case T3B, the
streak spacing is 4δ∗ in the transitional region. However, we will show in the next
section that the appearance of streaks for this case does not initiate transition.

3.4. Mechanism of transition in the T3B case

Jacobs & Durbin (2001) were the first to visualize Klebanoff modes and their
breakdown into turbulent spots in a spatial boundary-layer simulation. With the
FST intensity set to 3%, the boundary layer developed streaks that were about
1.2δ99 apart. Turbulent spot formation was apparently triggered via the penetration
of FST into the outer boundary layer. The spots grew in size as they were convected
downstream and merged with developed turbulence to maintain its upstream front.
Jacobs & Durbin concluded that the low-speed streak provides a path for the direct
contamination of the boundary layer with the FST when the streak moves into the
outer boundary layer, but is otherwise irrelevant to transition, i.e. no evidence of streak
instability was found. The turbulent spots resulting from this FST/boundary-layer
interaction were called ‘top-down’ spots because they originated from an incursion of
the FST into the outer boundary layer and spread vertically toward the wall while
being convected downstream with the mean flow.

Motivated by previous work on streak instability and breakdown (Andersson
et al. 2001; Brandt & Henningson 2002), Brandt et al. (2004) illustrated a different
mechanism. Using planar and three-dimensional images of the flow field, they
concluded that in their simulations, the formation of turbulent spots was caused
by one of two instability modes of the streamwise streak. The sinuous, or the
antisymmetric mode, was observed more often than the varicose, or the symmetric
mode. This could be explained by the analysis of Wu & Choudhari (2003) and
Andersson et al. (2001), who found the sinuous mode to be more unstable.

We note that neither Jacobs & Durbin (2001), nor Brandt et al. (2004) observed
spots of a well-defined shape. Arrowhead-shaped spots were reported by Matsubara
& Alfredsson (2001) in their studies of boundary-layer bypass transition. In this
section, we examine the evolution of boundary-layer disturbances for our cases T3Bs
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and SLSs using a combination of three- and two-dimensional images. We follow the
development of turbulent spots from their birth to their merger with the downstream
turbulent front. We note that, because of the high intensity of the background FST,
it is difficult to perform a quantitative characterization of turbulent spot precursors,
or to compute the leading- and trailing-edge velocities of the spots. We will focus on
the T3Bs case since, to our knowledge, the type of FST-induced transition observed
in this simulation has not been described before.

The spanwise domain of the T3B simulations is sufficiently large to permit
unhindered development of turbulent spots. Four turbulent spots were observed
and followed from birth to maturation during the course of the simulation. Two of
the spots observed have shapes that point in the streamwise direction, similar to the
illustration in figure 4(b) in Matsubara & Alfredsson (2001). The other two seem to
have rather arbitrary shapes. One spot from each category will be discussed.

Figure 13 illustrates the three-dimensional development of one turbulent spot
observed in the T3Bs simulation. The left halves of figures 13(a) and 13(b) show
spanwise-elongated structures at somewhat regular intervals in the streamwise
direction. These quasi-periodic structures have a spanwise length of �5, about three
times larger than the local boundary-layer thickness δ99 � 1.6 (see figure 5b). The
streamwise separation of adjacent spanwise structures is approximately 7.0, which
is five times larger than the local boundary layer thickness, and the period is 12.5,
corresponding to a convection speed of approximately 0.56. These structures are
stretched in the streamwise and wall-normal directions by the boundary-layer mean
shear around x = 50 (figure 13b), and reorient themselves into a series of horseshoe
vortices (these vortices have also been called lambda, �-, or hairpin) by x = 60
(figure 13c, d). Birth of additional horseshoe vortices can also been seen to the right
of the original trailing horseshoe vortex in this figure. Figure 13(e, f ) shows the same
structure at later times, when the horseshoe vortices have increased in number and
are organized into a young turbulent spot. At this stage, the shape of this spot is
reminiscent of an arrowhead. Two more horseshoe vortices are forming behind and
to the right of the spot, suggesting a possible mechanism by which the spot can
grow laterally while preserving an arrowhead shape, i.e. by inducing the formation
of more vortices on its flanks. Note that streamwise streaks are also present in the
figures. In figure 13(b), two low-speed streaks (black contours) are seen to the right
of the developing horseshoe vortex. However, both of them remain intact in figure
13(f ), at which point the turbulent spot is mature. Thus, the boundary-layer streaks
do not appear to participate in the transition process in the T3B case. Additional,
shorter high- and low-speed streaks are also present in figure 13(d) around and
underneath the growing horseshoe vortices. In this case, the streaks are generated
by the horseshoe vortices, and therefore do not initiate the transition process. From
figures such as figures 13(e) and 13(f ), we estimated the celerities of the leading and
trailing edges of this spot to be 0.88 and 0.72, respectively. The location of the leading
horseshoe vortex, and the most downstream location of quiescent flow behind the
spot, respectively, were used to compute these values.

3.5. Origin of the quasi-periodic disturbances

In figure 14 we show the streamwise evolution of the wall-normal velocity fluctuation
along the line (y, z) = (0.68, 35) that passes through the quasi-periodic structures in
figure 13. The streamwise structures have the signature of a short wavepacket with
the streamwise wavelength λ and velocity c of approximately 7 and 0.6, respectively,
corresponding to a period of 12. The wavelength of the wavepacket is defined as the
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Figure 13. Isosurfaces of the streamwise velocity fluctuation, u′ = ±0.3, shown in light grey
and black, respectively, and isosurfaces of Q = 0.015, shown in dark grey. The images illustrate
the development of a turbulent spot from the T3Bs simulation; (a) t = 189, (b) t = 205, (c)
t =219, (d) t = 229, (e) t =260, (f ) t = 295.

average distance between adjacent peaks, and the velocity is computed by dividing the
displacement of the most prominent peak in the wavepacket by the coresponding time
interval. The approximate local value of δ99 = 1.2 yields λ/δ99 = 5.8. The corresponding
frequency ω of the wavepacket is 0.52, which yields for the non-dimensional frequency,
F = ων/U 2

∞, the value 1100.
Nagarajan et al. (2007) observed a bypass transition scenario in which boundary-

layer disturbances appear in the form of wavepackets in the spanwise velocity signal.
The values for the group velocity and wavelength they reported were, on the average,
c = 0.52 and λ/δ99 = 5. While these numbers are in approximate agreement with our
results, we note that in our case the wavepacket manifests itself in the wall-normal, and
not the spanwise velocity component. Thus, the relationship between the transition
scenario reported by those authors and the one described here is uncertain.
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Figure 14. Streamwise evolution of the wall-normal velocity fluctuation, v′, at location
(y, z) = (0.68, 35), showing the movement of a wavepacket. Successive plots are separated
by �t = 16.

The wavepackets we observe are not due to TS waves. The Reynolds number based
on the displacement thickness at the location at which the wavepackets are detected
is approximately Reδ∗ = 250. The eigenfunctions corresponding to our values of Reδ∗

and F = 1100 are well within the stability region for a temporally growing wave in a
Blasius boundary layer.

Based on their values for c and F , Nagarajan et al. also concluded that the wave-
packets seen in their simulations are not due to TS waves, for which the corresponding
values would be under c = 0.44 and F = 400 (Jordinson, 1970; Gaster & Grant 1975).

To examine the origins of the wavepackets, in figure 15 we show filled contours of
the spanwise vorticity (defined as Ωz = ∂V /∂x − ∂U/∂y) in a plane located at z = 35,
which cuts approximately through the centre of both wavepackets that are clearly
visible in figure 13(b). The large contribution by the mean shear, ∂U/∂y, causes high
negative values of the vorticity in the boundary layer. The grey scale is adjusted to
highlight the increase in the spanwise vorticity during the time period over which
the wavepackets are observed. The vector plot superposed on the vorticity contours
represents the projection of the velocity fluctuation field onto the plane. Finally,
contours of Q are plotted as solid lines at the same value as in figure 13 to indicate
the locations of the wavepackets.

Figure 15 shows that the appearance of the wavepackets is associated with regions of
high shear that are found inside the boundary layer during the period of wavepacket
formation, corresponding approximately to 155 � t � 205, shown in figure 15(a–d).
These higher levels of shear appear to be caused by large free-stream eddies moving
toward the wall and sending high-momentum fluid towards the boundary layer. This is
consistent with the velocity fluctuation vectors above the boundary layer in figure 15,
t = 172, which show that the velocity is directed toward the surface in the vicinity of
the shear layer and the wavepacket.
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Figure 16. Contours of velocity fluctuations for a turbulent spot of type I. Case T3Bs:
y = 0.68; (a), (c), (e), (g) streamwise velocity fluctuation; (b), (d), (f ), (h) wall-normal velocity
fluctuation; (a, b) t =189; (c, d) t = 241; (e, f ) t =296; (g, h) t = 320.

We can also see from figure 15 that the wavepacket, as identified by the Q = 0.015
criterion, occupies a major portion of the boundary-layer thickness. See, for example,
figure 15, t = 189: the boundary layer thickness δ99 is � 1.2 at x =25.

3.6. Further visualizations of turbulent spots

In this section, we will track the temporal development of two distinct wavepackets
into turbulent spots by examining two-dimensional slices parallel to the wall. The spot
already shown in figure 13 is termed type I, and the second spot is termed type II.

Figures 16 and 17 correspond to spots of type I and II, respectively, and reveal the
features of the spot cross-sections. They complement the three-dimensional images
shown in figure 13 and x, y-slices in figure 15.

Again, these figures show no evidence that streak instability is related to the
origin of either spot. The spot precursors – the wavepackets – appear as regions of
upward- and downward-moving fluid, alternating in the streamwise direction, with
small oscillations perpendicular to the direction of the flow. This is shown for the first
spot in figure 16(b) at (x, y) = (33, 33), and 16(d) at (x, y) = (47, 27), where another
spot is forming upstream of the main one, and for the second spot in figure 17(b)
at (x, y) = (35, 27). In the first spot, the ends of the low/high-speed region are then
reoriented toward the flow direction, so that the resulting perturbation has the wall-
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Figure 17. Contours of velocity fluctuations for a turbulent spot of type II. Case T3Bs;
y =0.68: (a), (c), (e), (g) streamwise velocity fluctuation; (b), (d), (f ), (h) wall-normal velocity
fluctuation; (a, b) t = 82; (c, d) t = 154; (e, f ) t =179; (g, h) t = 261.

normal velocity signature of a horseshoe vortex. This is most clearly seen from figure
16(f ) at (x, y) = (80, 27) in the spot developing upstream. The reorientation of this
perturbation is due to the boundary-layer mean shear. When the central part of the
low/high-speed region is moved up by the fluctuating velocity, the velocity gradient
causes it to move faster than the ends, stretching the disturbance into a > shape.
For the second spot (figure 17), only the top half of the low/high-speed region is
reoriented toward the streamwise direction, which gives it the appearance of a quasi-
streamwise vortex. This is shown in figure 17(d) at (x, y) = (80, 33). As a result of the
asymmetry, the ensuing turbulent spot does not have a > shape.

Next, the vortical structures develop instabilities, which appear as oscillations in the
wall-normal velocity along their axes. These instabilities lead directly to turbulence,
in the sense that no coherent structures can be identified once these oscillations
are pronounced. This can be seen in figures 16(f ) at (x, y) = (87, 32) and 17(f ) at
(x, y) = (93, 35). Figure 30 in the online supplement § A.6 shows a magnified view of
the upstream horseshoe vortex in figure 16(e, f ) undergoing breakdown to turbulence.
A three-dimensional view of the breakdown process can also be seen in figure 13(a–c)
in the isosurfaces of Q.
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Figure 18. Isosurfaces of the streamwise velocity fluctuation, u′ = ± 0.30, shown in light grey
and black, respectively, and isosurfaces of Q = −(∂ui/∂xj )(∂uj/∂xi) = 0.045, shown in dark
grey. The images illustrate two types of streak breakdown observed for case SLSs; (a) t = 136;
asymmetric breakdown; (b) t = 270; symmetric breakdown.

The first spot spreads upstream through its lateral edges and merges with the fully
turbulent region at x � 220. The contours of the wall-normal velocity fluctuation in
figures 16(f ) and 16(h) suggest that the shape of the spot points in the streamwise
direction. Interestingly, the shape of the second spot appears to be arbitrary up to
t = 261, at which point it has just merged with another nascent spot developing below
it (seen in figure 17(f ) at (x, y) = (110, 17)). The resulting larger spot points upstream
(figure 17h at (x, y) = (145, 30)). This shape persists until the spot merges with the
turbulent front (not shown).

Since the Reynolds stresses in the T3Bs case showed a somewhat different
development from the T3Bf case in the pre-transitional region, as described in § 3.1,
we also examined frame-by-frame the transitional flow field corresponding to the
T3Bf case, in which the presence of the full leading edge is expected to result in a
more physical flow field. The results of the comparison between cases T3Bs and T3Bf
indicate that turbulent spot formation and evolution remain the same. For example,
figure 29(a, b) in the online supplement § A.5 correspond to a young turbulent spot
from the T3Bf simulation, and should be compared with figures 16(e) and 16(f )
respectively, which show a turbulent spot in a similar stage of development for case
T3Bs.

For comparison with the T3B scenario, we conclude this section with a brief
description of breakdown to turbulence for case SLSs. Figure 18 shows three-
dimensional images of two streaks undergoing two different types of deformation
leading to the formation of turbulent spots. Isosurfaces of positive and negative
streamwise velocity fluctuation (u′ = ±0.30) are shown in light grey and black,
respectively, and isosurfaces of Q = −(∂ui/∂xj )(∂uj/∂xi) = 0.045, in dark grey.

The first type of streak deformation is illustrated in figure 18(a), which shows two
adjacent high- and low-velocity streaks undergoing oscillations about their axes. The
second type of deformation observed is shown in figure 18(b). The high-speed streak in
the middle appears to be undergoing symmetric fluctuations about its axis, as shown
by two flanking low-speed streaks (black) and two smaller-scale eddies shown in grey
and corresponding to Q isosurfaces. In both cases, breakdown is accompanied by a
progressive loss of a well-defined streaky structure and the appearance of smaller-scale
eddies, shown by the dark grey contours of Q. Details on the temporal evolution of
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the two streaks including images of the resulting turbulent spots are given in § A.4 of
the online supplement.

From our simulations of cases SLSs/f, we cannot determine whether streak
breakdown is caused by secondary instabilities. Some support for this conjecture
comes from the fact that the two modes of breakdown we observe have asymmetry
and symmetry, consistent with the notion of sinuous and symmetric instability.
Nevertheless, the background 6% FST in our simulations prevents us from ruling out
the scenario proposed by Jacobs & Durbin (2001) in favour of that of Brandt et al.
(2004).

To underscore the importance of streaks in transition of the SLS cases, we
computed frequency spectra of the streamwise velocity at various locations within the
computational domains. The wall-normal location at which the spectra are calculated
corresponds to the maximum boundary-layer urms. This position is approximately in
the middle of the transitional boundary layer, but moves close to the wall at the onset
of turbulence, near x =150. Asterisks in figure 19(a) indicate the evolution of energy
in the low-frequency portion of the spectrum, F = 106ων/U 2

∞ � 15, and figure 19(b)
shows profiles of the square root of this energy component across the boundary layer.
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Comparison of this figure with figure 27 (a) from the online supplement § A.4, in
which the square root of the total energy (i.e. urms ) has been plotted, suggests that
the increase in the boundary-layer urms for case SLSs is due to energy growth in
the low frequencies. For comparison, in figure 19(a), we include the evolution of the
high-frequency energy component (F � 100). The square root of this energy is also
plotted across the boundary layer in figure 19(b) for x = 54. The corresponding modes
are seen to peak closer to the edge of the boundary layer (δ99 � 3δ∗), and, unlike the
low-frequency modes, are not amplified in the streamwise direction. These results
are consistent with both experiments, e.g. Klebanoff (1971), Matsubara & Alfredsson
(2001), and theoretical models (Choudhari 1996; Leib, Wundrow & Goldstein 1999).

An important conclusion from the comparison between transitional flows in the
SLS and T3B cases is that, in the former, streamwise streaks actively participate in
transition, whereas in case T3B, the transition mechanism is fundamentally different,
and involves streamwise wavepackets with spanwise scales much larger than the local
boundary-layer thickness.

4. Discussion and conclusion
We have performed four DNS of boundary-layer transition due to 6% FST with

the aim of studying the effects of the FST length scale variations on the transition
behaviour. Two of the simulations are designed to match the T3B experiment by
Roach & Brierley (1992). These simulations are carried out at the FST length scale
value of 14, RL = 6580, to match FST evolution in the experiment. This value for
the FST length scale is several times larger than typical values (�3) used in previous
simulations.

The two simulations (T3Bs/f) differ in terms of the symmetry of the oncoming
disturbance field: for case T3Bs, we used a symmetry condition along y = 0 in the
region upstream of the plate leading edge, and for case T3Bf, the symmetry condition
is not imposed, i.e. the full domain is considered. The purpose of the T3Bs case was to
permit longer simulation times, and to study the effect of changing the leading-edge
disturbance environment on transition.

We performed two additional simulations, SLSs/f, which were almost identical to
the T3Bs/f cases, respectively, except for the lower value of the FST length scale. In
these two cases, the FST integral length scale is set to 2.3. This value was chosen
to match previous simulations, in which transition via the breakdown of Klebanoff
modes was reported. The transition mechanism observed for the SLS cases appears
the same as reported in previous simulations and experiments, and was compared
with the transition mechanism of the T3B case.

The main effect of the symmetry condition on the T3B simulation is a downstream
shift in the location of transition. The Reynolds stress development within the
boundary layer is altered: the amplitude of the vertical Reynolds stress 〈vv〉† at
the leading edge is reduced by a factor 6 in the T3Bs case compared to the T3Bf
case. This discrepancy accounts for different development of the streamwise Reynolds
stress downstream of the leading edge. In the T3Bf case, 〈uu〉 is concentrated in a
rapidly growing sharp peak in the middle of the boundary layer, at y/δ∗ = 1.3, and
in the T3Bs cases it grows more slowly and has a more diffuse wall-normal peak
at y/δ∗ = 1.65. Noting that at the leading edge, 〈vv〉 is the component of Reynolds

† At the leading edge, the y-direction is parallel to the vector tangent to the plate tip.
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stress that is tangential to the plate surface, we suggested that the sharp 〈uu〉 peak
in the T3Bf cases arises by advection of 〈vv〉 in the leading-edge vicinity along the
curvilinear coordinate of the flat plate. Thus, the boundary layer is receptive to the
FST at the leading edge of the plate, i.e. suppression of the 〈vv〉 amplitude in the
vicinity of the leading edge via the use of the symmetry condition results in notable
differences in the boundary-layer contamination as measured by 〈uu〉.

Additional insight comes from comparing cases SLSs/f, which correspond to
L11 = 2.3. The main effect of the symmetry condition is, again, to delay the onset
of transition in case SLSs, compared to SLSf. However, although the discrepancy in
〈vv〉 at the leading edge between cases SLSs and SLSf is similar to that described for
the T3B cases, the downstream profiles of 〈uu〉 inside the boundary layer have the same
shape, and exhibit a peak at the same location, y � 1.3δ∗. Furthermore, in the early
stages of boundary-layer development (x =5–40), profiles of the maximum streamwise
Reynolds stress inside the boundary layer scaled by the TKE at the boundary-layer
edge fall on top of each other (cf. figure 10), indicating a ‘local similarity’, i.e. coupling
between the local free stream and the boundary layer. We loosely refer to this coupling
as ‘distributed receptivity’ because the interaction between the boundary layer and the
free stream takes place over a finite streamwise region. Thus, for case SLSs, although
the attenuated 〈vv〉 causes a deficit in 〈uu〉 downstream of the leading edge, this deficit
is rapidly replenished through the coupling between the free stream and the boundary
layer, in proportion with the overall FST intensity. For this reason, the qualitative
development of the perturbed boundary layer is the same in cases SLS. In contrast, the
qualitative differences in the behaviour of the streamwise Reynolds stress development
observed for the T3Bs/f cases suggest that the distributed receptivity mechanism is
weaker, i.e. insufficient to replenish the 〈uu〉 deficit caused by the attenuated 〈vv〉 at
the leading edge. Finally, we note that the transition delay in the T3Bs is not simply
because the 〈vv〉 is lower along the surface of the plate. In fact, despite significant
attenuation near the leading edge, by x = 5, the near-wall 〈vv〉 profiles are essentially
identical in the two cases (cf. figure 7). An explanation for the reduced distributed
receptivity in the downstream region for cases T3B and SLS may be related to the
larger mismatch between the free stream and boundary-layer length scales in the T3B
case. For the SLS cases, L11 is comparable to the boundary-layer thickness δ99 at
the onset of transition, and for cases T3Bs and T3Bf, it is approximately six times
the transitional δ99. This conjecture is consistent with the fact that, in the limit of
large spanwise wavelengths, the transient growth of Klebanoff mode perturbations
is known to scale inversely with the spanwise wavelength (Choudhari 1996; Lieb,
Wundrow & Goldstein, 1999).

The hypothesis of reduced receptivity does not contradict the conclusion of Brandt
et al. (2004) and Ovchinnikov et al. (2004) that increasing the FST length scale
accelerates transition. First, the largest FST length scale used in their simulations was
approximately 3δ99 at Rex � 30 000, whereas the FST length scale used in our cases
T3B is around 7δ99 at this location. Second, these authors used truncated simulations,
in which the computation is started downstream of the leading edge at an arbitrarily
prescribed Rex . Therefore, their simulations do not account for the receptivity in the
vicinity of the leading edge.

The experiments of Jonáš, Mazur & Uruba (2000), on the other hand, span the
range of length scales used in the current simulations, and indicate that increasing
the FST length scale moves the transition region upstream. Thus our results are in
qualitative disagreement. However, the FST intensity in their experiments was fixed at
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3%, compared to 6% in our simulations. It is possible that at the higher intensity, the
optimal FST length scale for transition is smaller. Some support for this conjecture
comes from the fact that small-scale turbulence penetrates the boundary layer more
easily (Brandt et al. 2004), but its free-stream intensity also decays more rapidly.
Thus, the overall perturbation of the boundary layer is reduced compared to the case
of large-scale turbulence, which decays more slowly. Increasing the FST intensity may
offset the faster decay of the small-scale turbulence and make it more effective than
the larger scales in inducing transition.

The transition mechanism for the SLS cases has been described before (Jacobs &
Durbin 2001; Brandt et al. 2004) and is different from that in the main simulation
cases T3B. The boundary-layer disturbances are low-frequency modes that appear
as low- and high-speed streaks of the streamwise velocity. Their energy increases
approximately linearly with the streamwise distance after an initial adjustment region,
and in the transitional region they have a spanwise separation of 2δ∗–3δ∗. The
conclusion regarding the involvement of streaks in transition is indirectly supported
by the following. The earlier onset of transition in case SLSf relative to SLSs
is accompanied by an earlier rise in the streamwise Reynolds stress (figure 10a).
However, examination of the energy in the u-velocity spectrum shows energy
increasing in low-, but not high-frequency modes (cf. figure 19a), consistent with
known increase in Klebanoff mode amplitude with downstream distance. Furthermore,
the wall-normal profile of the low-frequency modes is essentially the same as that
based on the full spectrum.

For case T3Bs, we have shown that spot precursors are present as close upstream as
x = 35, and a small turbulent spot is shown at x � 65 (figure 16c, d). However, streaks
with a well-defined spanwise separation first appear around x � 100 (cf. figure 12a).
Thus, these streaks cannot be directly responsible for transition. Their appearance
may be unrelated to the turbulent spots, or, alternatively, may be caused by the
turbulent spots themselves, since any localized disturbance will be stretched by the
boundary-layer mean shear, which will give it a streaky appearance.

The absence of streaks near the leading edge unmasks an alternative transition
mechanism. The FST induces a streamwise wavepacket that appears in the wall-
normal velocity component. Wavepackets are associated with spanwise vortical
structures, which occupy most of the vertical extent of the boundary layer. Unlike the
streaks, which are present close to the leading edge in the SLS cases, wavepackets
are first detected at x � 25 in the T3Bs case. Initially perpendicular to the mean flow,
the spanwise vortices subsequently reorient themselves to become partially aligned
in the streamwise direction; at this stage, the dominant structures appear either as
symmetric horseshoe/lambda/hairpin vortices (two legs) or quasi-streamwise vortices
(one leg). The vortices develop instabilities and break down to turbulence. Hairpin
vortices appear to generate spots with a shape that points approximately downstream,
and single-leg quasi-streamwise vortices lead to spots of arbitrary shape. We note that
this mechanism appears different from the one described by Nagarajan et al. (2007).
First, the disturbance in our case seems to originate from spanwise and not streamwise
vorticity, as observed in their work. Second, in our case the wavepackets appear in
the wall-normal rather than the spanwise velocity component. Third, in our case,
the wavepacket is not confined only to the lower regions of the boundary layer.
Fourth, the wavepackets observed by Nagarajan et al. (2007) do not develop into
turbulent spots of a well-defined shape. One possible explanation for the differences
between our results and those of Nagarajan et al. is that in their case, the highest
Reynolds number based on the FST integral length scale was ReL = 2250, compared
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to ReL = 6580 for our cases T3Bs/f. The maximum FST intensity in their simulations
is 4.5%, which is also lower than in our simulations.

Hairpin and quasi-streamwise vortices have been found in numerous previous
studies of transitional boundary layers. Perry, Lim & Teh (1981) created a turbulent
spot by a short pulse of air from a small hole drilled in the floor of their wind tunnel.
The spot was composed of an array of ‘folds’ near the wall, which were similar in
appearance to �-vortices. It had an arrowhead shape and was trailed by long streaky
tails. They hypothesized that a tubulent spot is simply a staggered arrangement of
a series of �-shaped vortices. Asai & Nishioka (1990) investigated boundary-layer
transition at subcritical (i.e. linearly stable) Reynolds numbers, caused by acoustic
perturbations near the leading edge. Their smoke visualization study revealed that a
hairpin-like structure was important in the transition process. Singer & Joslin (1994)
and Singer (1996) performed DNS to study the evolution of a single hairpin vortex
in the flat-plate boundary layer and its subsequent development into a turbulent spot.
The hairpin vortex was generated by blowing at the wall and its evolution was very
similar to that described in previous studies. The spot was composed of hairpin and
quasi-streamwise vortices, possessed a clear arrowhead shape and was followed by
velocity streaks. In addition, they observed the formation of new hairpin vortices near
the trailing edge of the spot.

The similarities between the spots found in our T3B simulations and those observed
in the above studies are striking. This might seem surprising since in our case
turbulent spots are generated by forcing at the boundary-layer edge and not at the
wall. However, the similarity is consistent with the well-established observation that
the turbulent spot as described in this and many previous studies is a fundamental
feature of transitional boundary layers.

The present results indicate the importance of the FST length scale in determining
not only the onset of transition, but also the underlying physical mechanism. Future
numerical and experimental studies of boundary-layer transition should consider not
only the effects of the Reynolds number based on either the plate thickness or the
FST length scale, but also the ratio between the two length scales as an additional
parameter. It is possible, for instance, that for a fixed leading-edge geometry, FST of
slightly differing length scales will produce different disturbance growth rates inside
the boundary layer, which could reconcile the differences in the measured transition
onsets among experiments.
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